According to data collated in 2020, Instagram users spend an average of 53 minutes a day on the platform. A statistics tutor decided to survey her class of 15 students about the time they spend on Instagram to see how this compared to this average. Her students wrote the estimated minutes per day they spend on Instagram. She hypothesised that her class would spend significantly longer per day on Instagram than this platform-wide average.

😑 Data Analyses	Edit	
Paste Clipboard Edit	Compute Transform Delete Filters Rows	
	DATA VARIABLE	Our variable is labelled
	Insta-minutes	"Insta-minutes" and
	Minutes per day spent on Instagram	provided a description of the
		variable
		variable.
	Data type integer V (auto)	The variable has been
	Missing values	specified as continuous
		variable in Measure type
		variable in Measure type.
	Retain unused levels 🔵	
🔶 Insta-minutes		
1 45		In the data spreadsheet are
2 40		
3 60		the 15 scores on the Insta-
5 100		minutes variable obtained
6 90		from the 15 students in the
7 20		nom the 15 students in the
8 120		statistics class. These have
9 60		heen entered as a single
10 75		been entered as a single
12 85		column of data with each
13 110		row representing an
14 90		
15 120		individual student.
16 17		

Step 1 – Taking a look at the data.

On the Analyses tab select the T-tests menu, then select One Sample T-Test.

Step 3 – Selecting analysis options

When you first select the One Sample T-Test the following screen will appear. The analysis options appear on the left and the empty results appears on the right, ready to update as you select the analysis options.

There are two key things we have to do to run our one sample *t*-test.

Doing these two things provides us with some bare bones results for our one sample *t*-test.

Results One Sample T-Test One Sample T-Test Insta-minutes Student's 2.98062 14.00000 0.00993 Note. H ₂ population mean # 53
Results
One Sample T-Test
One Sample T-Test Statistic df p
Insta-minutes Student's t 2.98062 14.00000 0.00993
Note. H _a population mean ≠ 53
Insta-minutes Student's 2.98062 14.0000 0.00993 Note: H, population mean # 53 Results One Sample T-Test One Sample T-Test Insta-minutes Student's t 2.98062 14.0000 0.00993 Note: H, population mean # 53

Let's look at the extra options we could choose from to help flesh out the information we can report.

Additional statistics that are helpful to ask for are descriptives and the mean difference to help you describe the pattern of results. The effect size helps you describe the magnitude of the result you have obtained. You can also ask for confidence intervals around the effect size or the mean difference. We'll ask for these for our mean difference in this instance.

Step 4 – Finding the components for reporting.

Results									
One Sampl	e T-Test								
One Sample T-Te	est								
						95% Confide	nce Interval		
		Statistic	df	р	Mean difference	Lower	Upper		Effect Size
Insta-minutes	Student's	2.98062	14.00000	0.00993	27.66667	7.75839	47.57495	Cohen's d	0.76959
Note. Ha popula	ation mean ≠	53							
Descriptives									
Descriptives	N	Mean	Median	SD	SE				

Here we have all the information to write up a detailed results paragraph. Let's pull the components out and see where they fit into the write up.

We have four key components here.

- 1. The *t* score, *df* and *p* value the *t*-test result
- 2. An effect size in the form of Cohen's *d*.
- 3. The mean difference and associated confidence interval the difference between our sample mean and the population mean/test score.
- 4. Descriptives for our data mean and standard deviation are of most use here.

The Write Up:

Students in the statistics class spend 27.67 minutes more per day (95% *CI* [7.76, 47.58]) on Instagram (M = 80.67 minutes, SD = 35.95 minutes) than the average of 53 minutes per day spent by all Instagram users in 2020. These 27.67 additional minutes of Instagram time represent a significant difference from the platform wide average, with a large effect size, *t* (14) = 2.98, p = .010, d = 0.77.

Created by Janine Lurie in consultation with the Statistics Working Group within the School of Psychology, University of Queensland ¹

Based on *jamovi* v.1.8.4²

¹ The Statistics Working Group was formed in November 2020 to review the use of statistical packages in teaching across the core undergraduate statistics units. The working group is led by Winnifred Louis and Philip Grove, with contributions from Timothy Ballard, Stefanie Becker, Jo Brown, Jenny Burt, Nathan Evans, Mark Horswill, David Sewell, Eric Vanman, Bill von Hippel, Courtney von Hippel, Zoe Walter, and Brendan Zietsch.

² The jamovi project (2021). jamovi (Version 1.8.4) [Computer Software]. Retrieved from <u>https://www.jamovi.org</u>