Conducting χ^2 test for independence in *jamovi*

A class of 60 undergraduate law students took part in mock trials in which they were assessed on their ability to defend a fictitious client against a criminal charge. Fellow students acted as jury members for the mock trials and in each case handed down a verdict. Students were assessed on the quality of their presentation and confidence in defending their fake clients, while it was a badge of honour to also receive a not guilty verdict. Students were randomly allocated to use one of two television lawyer mentors to model their approach. Thirty students were instructed to model their style on the character of Annalise Keating from the television series *How to Get Away with Murder*¹ while the other thirty were told to emulate Harvey Specter from the television series *Suits*². The Unit Coordinator decided to run some analysis to see if there was an association between the style the students modelled themselves on and the nature of the verdict obtained.

Step 1 – Taking a look at the data.

Our dependent variable "Verdict" has been specified as a nominal variable in Measure type and is the first column of data. This variable has two levels: not guilty and guilty.

			DATA VARIABLE		
			Television Lawyer Model		
			Description		
			Measure type 💧 Nominal 🗘	Levels	
		<	Data type Integer 🗘	Annalise Keating	
			Missing values	Harvey Specter	2
				Retain unused levels (5
	👌 Verdict	🐣 Televisio			
1	not guilty	Annalise Ke			
2	guilty	Harvey Spec			
3	not guilty	Harvey Spec			
4	not guilty	Harvey Spec			
5	not guilty	Harvey Spec			
0	met exiliar				

In the second column of our data spreadsheet we have the variable "Television Lawyer Model" indicating which model the students were instructed to capture. The measure type has been set as nominal. There are two groups: Annalise Keating and Harvey Specter.

¹ Further information about the television series How to Get Away with Murder can be found at <u>https://en.wikipedia.org/wiki/How_to_Get_Away_with_Murder</u>.
 ² Further information about the television series Suits can be found at <u>https://en.wikipedia.org/wiki/Suits</u> (American_TV_series).

Step 2 – **Navigating to the** χ^2 **analysis menu.**

On the Analyses tab select the Frequencies menu. Then under Contingency Tables select Independent Samples, χ^2 test of association.

Step 3 – Selecting analysis options

When we have a variable that we consider our dependent variable we move it to the Rows position and our independent variable we conventionally move to the Columns position.

Having shifted our two variables into position we are given the following default output.

There are three drop down menus. We'll be using options from Statistics and Cells.

> Statistics
> Cells
> Plots

✓ Statistics		
Tests	Comparative Measures (2x2 only)	
✓ χ ²	Odds ratio	Under the Statistics drop down t
$\begin{tabular}{ c c c c } \hline \chi^2 & continuity & correction \end{tabular}$	Log odds ratio	key thing we will ask for is Crame
Likelihood ratio	Relative risk	V as the most versatile of the eff
Fisher's exact test	Difference in proportions	size options we could select to
z test for difference in 2 proportions	Confidence intervals	report with our χ^2 result.
Hypothesis	Interval 95 %	
 ● Group 1 ≠ Group 2 	Compare rows	
Group 1 > Group 2		
◯ Group 1 < Group 2		
Nominal	Ordinal	
Contingency coefficient	Gamma	
🕑 Phi and Cramer's V	Kendall's tau-b	
	Mantel-Haenszel	
✓ Cells		Under the Cells drep down we'll
Counts	Percentages	ask for "Expected Counts" as a
Observed counts	Row	comparison point as well as
Expected counts	Column	"Column percentages" to aid in our

Contingency Tables

		Television Lawyer Model		
Verdict		Annalise Keating	Harvey Specter	Total
not guilty	Observed	12	22	34
	Expected	17.00000	17.00000	34.00000
	% within column	40.000 %	73.333%	56.667 %
guilty	Observed	18	8	26
	Expected	13.00000	13.00000	26.00000
	% within column	60.000 %	26.667%	43.333%
Total	Observed	30	30	60
	Expected	30.00000	30.00000	60.00000
	% within column	100.000 %	100.000%	100.000 %

Total

$\chi^{\rm 2}$ Tests

	Value	df	р
X² N	6.78733 60	1	0.00918

Nominal			
	Value		
Phi-coefficient Cramer's V	0.33634 0.33634		

We have all the output we need now. Let's push on to writing up our results.

write up.

N.B., The χ^2 test uses the discrepancy between the observed and expected frequencies in each cell to determine if there is a significant association between the two variables.

Step 4 – Finding the components for reporting the omnibus results

We've run all we need to write up our χ^2 analysis.

The components we'll report are:

- 1. The χ^2 statistic, *df* and *p* value our significance test.
- 2. An effect size in the form of Cramer's V.
- 3. Column percentages to help describe the pattern of results.

Contingency Tables

The Write Up:

Phi-coeffic Cramer's V 33634

0.33634

A χ^2 test for independence was conducted to determine whether the verdict in mock trials conducted by law students was associated with the television lawyer model the defending student lawyer was instructed to emulate. A significant association between verdict and lawyer model was found χ^2 (1) = 6.79, p = .009, V = .34. Examinations of the verdict rates found that 73% of fake clients were found not guilty when represented by student lawyers mimicking the style of Harvey Specter, while only 40% were found not guilty when student lawyers were using a style more in keeping with Annalise Keating.

Created by Janine Lurie in consultation with the Statistics Working Group within the School of Psychology, University of Queensland 3

Based on *jamovi* v.1.8.4⁴

³ The Statistics Working Group was formed in November 2020 to review the use of statistical packages in teaching across the core undergraduate statistics unit. The working group is led by Winnifred Louis and Philip Grove, with contributions from Timothy Ballard, Stefanie Becker, Jo Brown, Jenny Burt, Nathan Evans, Mark Horswill, David Sewell, Eric Vanman, Bill von Hippel, Courtney von Hippel, Zoe Walter, and Brendan Zietsch.

⁴ The jamovi project (2021). jamovi (Version 1.8.4) [Computer Software]. Retrieved from <u>https://www.jamovi.org</u>